- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Alvarez-Pol, Héctor (1)
-
Ascher, Pauline (1)
-
Blank, Bertram (1)
-
Block, Michael (1)
-
Brown, B Alex (1)
-
Caamaño-Fresco, Manuel (1)
-
Caceres, Lucia (1)
-
Canete, Laetitia (1)
-
Cox, Daniel M (1)
-
Eronen, Tommi (1)
-
Fahlander, Claes (1)
-
Fernández-Domínguez, Beatriz (1)
-
Forsberg, Ulrika (1)
-
Gerbaux, Mathias (1)
-
Gerl, Jürgen (1)
-
Giovinazzo, Jérôme (1)
-
Golubev, Pavel (1)
-
Grinyer, Gwen F (1)
-
Grévy, Stéphane (1)
-
Habermann, Tobias (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Hydroxyapatite (HAP) exhibits a highly oriented hierarchical structure in biological hard tissues. The formation and selective crystalline orientation of HAP is a process that involves functional biomineralization proteins abundant in acidic residues. To obtain insights into the process of HAP mineralization and acidic residue binding, synthesized HAP with specific lattice planes including (001), (100), and (011) are structurally characterized following the adsorption of aspartic acid (Asp). The adsorption affinity of Asp on HAP surfaces is evaluated quantitatively and demonstrates a high dependency on the HAP morphological form. Among the synthesized HAP nanoparticles (NPs), Asp exhibits the strongest adsorption affinity to short HAP nanorods, which are composed of (100) and (011) lattice planes, followed by nanosheets with a preferential expression of the (001) facet, to which Asp displays a similar but slightly lower binding affinity. HAP nanowires, with the (100) lattice plane preferentially developed, show significantly lower affinity to Asp and evidence of multilayer adsorption compared to the previous two types of HAP NPs. A combination of solid-state NMR (SSNMR) techniques including 13C and 15N CP-MAS, relaxation measurements and 13C−31P Rotational Echo DOuble Resonance (REDOR) is utilized to characterize the molecular structure and dynamics of Asp-HAP bionano interfaces with 13C- and 15N-enriched Asp. REDOR is used to determine 13C−31P internuclear distances, providing insight into the Asp binding geometry where stronger 13C−31P dipolar couplings correlate with binding affinity determined from Langmuir isotherms. The carboxyl sites are identified as the primary binding groups, facilitated by their interaction with surface calcium sites. The Asp chelation conformations revealed by SSNMR are further refined with molecular dynamics (MD) simulation where specific models strongly agree between the SSNMR and MD models for the various surfaces.more » « less
-
Sarmiento, Luis G; Roger, Thomas; Giovinazzo, Jérôme; Brown, B Alex; Blank, Bertram; Rudolph, Dirk; Kankainen, Anu; Alvarez-Pol, Héctor; Raj, Alex Arokia; Ascher, Pauline; et al (, Nature Communications)Abstract The observation of a weak proton-emission branch in the decay of the 3174-keV53mCo isomeric state marked the discovery of proton radioactivity in atomic nuclei in 1970. Here we show, based on the partial half-lives and the decay energies of the possible proton-emission branches, that the exceptionally high angular momentum barriers,$${{{{{{\mathcal{l}}}}}}}_{{{{{{\rm{p}}}}}}}=9$$ and$${{{{{{\mathcal{l}}}}}}}_{{{{{{\rm{p}}}}}}}=7$$ , play a key role in hindering the proton radioactivity from53mCo, making them very challenging to observe and calculate. Indeed, experiments had to wait decades for significant advances in accelerator facilities and multi-faceted state-of-the-art decay stations to gain full access to all observables. Combining data taken with the TASISpec decay station at the Accelerator Laboratory of the University of Jyväskylä, Finland, and the ACTAR TPC device on LISE3 at GANIL, France, we measured their branching ratios as bp1= 1.3(1)% and bp2= 0.025(4)%. These results were compared to cutting-edge shell-model and barrier penetration calculations. This description reproduces the order of magnitude of the branching ratios and partial half-lives, despite their very small spectroscopic factors.more » « less
An official website of the United States government
